Development and Field Testing Novel Natural Gas (NG) Surface Process Equipment for Replacement of Water as Primary Hydraulic Fracturing Fluid

Project # DE-FE0024314

Griffin Beck

Southwest Research Institute (PI)

Sandeep Verma

Schlumberger – Doll Research Center (Sub-PI)

U.S. Department of Energy

National Energy Technology Laboratory

Mastering the Subsurface Through Technology, Innovation and Collaboration:

Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 16-18, 2016

This presentation provides an overview of work to design and test a novel NG fracturing process

Project Overview, Benefit, & Goals

Process Development & Optimization

Lab-Scale Test Design

Future Work

Most hydraulic fracturing treatments use a significant volume of water

Current Fracturing Process

- Significant volume of water used to initiate fracture and carry proppant
- 3 to 7 million gal / application
- Recovered water must be either cleaned or disposed
- How to reduce or eliminate?

Proposed Natural Gas Fracturing Process

This projects supports a "critical component of the DOE portfolio to advance the environmentallysound development of unconventional domestic natural gas and oil reserves" by "[developing] improved technologies and engineering practices to ensure these resources are developed safely and with minimal environmental impact" DE-FOA-0001076

Work to develop the NG fracturing process is scheduled to occur over a three-year period

Project Objective

Develop a rugged, mobile, and economic system that can take natural gas and prepare it for use in fracturing of gas shale to significantly reduce water usage from traditional fracturing methods

Year 1 (2015)

Identify optimal process for bringing the wellhead gas to injection pressure (10,000 psia) and temperature (ambient ±20 °F)

Year 2 (2016)

Complete a laboratory scale test to validate fracturing concept

Year 3 (2017)

Complete a field test to validate the ability of the system to operate at field conditions

Initial work in 2015 focused on brainstorming processes to generate high pressure NG

Six processes, including direct compression and multiple refrigeration cycles, were considered

- Two additional liquefaction cycles developed (Cycles 5 & 6)
- Patent applications being explored

The cycles were modeled and specific energy was estimated

- HYSYS[®] models used to estimate specific energy (energy required to produce unit mass of compressed NG)
- Specific energy is a function of gas composition and pressure / temperature
- Equipment footprint for liquefaction cycles (e.g., coolers to reject heat) found to be very large

*all values normalized to direct compression specific energy

In general, the amount of energy required for liquefaction cycles is very high

With the top three cycles selected, additional work focused on preliminary design and optimization

- Quotations & specs were obtained for commercially available equipment
- Equipment included: centrifugal and reciprocating compressors, cryogenic liquid pumps, PCHE, companders, air coolers

Ariel JGC Compressor [1]

 HYSYS models were updated with specific equipment performance values: η, ΔP, ΔT

 Cycles were optimized to achieve lowest cycle specific energy

System costs were estimated using vendor quotations

Models were updated with quoted performance specifications and optimized

*all values normalized to direct compression specific energy from conceptual analysis

- Direct compression cycle:
 - Included the fewest number of components
 - Had the lowest equipment cost
- The cycle was selected for continued development into project years 2 & 3

A literature survey was conducted to identify rheological properties of NG foam

A lab-scale test concept was generated and test goals were identified

Year 2 project work has focused on the detailed design and construction of the lab-scale test stand

Year 2 Lab-Scale Test Parameters

Parameter	Parameter Range
Pressure (psia)	2500, 5000, and 7500
Flow Rate (gpm)	0.3 to 7
Shear Rate (s ⁻¹)	660 to 140,570
Natural Gas Fraction (Quality, %)	60, 70, and 80
Guar and Surfactant Concentration	Guar: 30 lbm/1,000 gal Surfactant: 5 gal/1000 gal
Delta-P Test Section Diameter (in)	0.125 to 0.270
Temperature (°F)	90, 125, and 160
Fracture Pressure (psi)	300 or 500

•	Test matrix and test parameter ranges are defined – Limits account for equipment operating limits – Test conducted at conditions that match	
•	field conditions 17 test points	
• Significant effort to identify equipment suitable for the rigorous test conditions		

CS&P Pump and J.M. Canty Sight-Glass [5-6]

Several accomplishments have been made and additional tasks are planned for the future

Year 1 – System Design and Optimization			
Brainstorm different paths for processing natural gas	Complete		
Identify top process (based on thermodynamics and cost/availability)	Complete		
Design lab scale test set-up	Complete		
Investigate the rheological properties of natural gas foams	Complete		
Year 2 – Lab Scale Testing			
Procure equipment for test system	In progress		
Construct test system	Aug./Sept. 2016		
Commission test system	October 2016		
Complete Testing and analysis of data	November 2016		
Evaluate lab scale testing and identify successes and areas for improvement	December 2016		
Year 3 – Field Testing			
Evaluate available test sites	In progress		
Set-up equipment at field location	2017		
Run system in field and analyze data	2017		
Estimate cost of industrial size system	In progress		

There are opportunities for collaboration between projects

Foam/Fracture Fluid Test Stand

- Lab-scale test stand can be used to investigate a variety of foams and other fracturing fluids **at field** conditions.
- Current and future investigations can utilize the facility at SwRI

Enhanced Oil Recovery (EOR)

- Use of natural gas as a fracturing fluid could enhance recovery
- Present and future research of enhanced recovery using natural gas can be leveraged to improve the NG foam fracturing methods investigated by the current project

Foam Fluid Data

- NG foam rheology data not published
- Foam rheology results from current work can used in multiple simulation codes

The alternative fracturing process using NG as the primary fluid appears promising

Key Findings from Year 1

- Fracturing with NG foam could decrease water consumption by as much as 80% (by volume)
- The optimal process to produce high pressure NG is through direct compression
- Equipment needed to compress gas is commercially available
- Additional benefits include:
 - Possible recovery and use of fracturing fluid
 - Enhanced production

Future Work

- Perform fracture treatment at field location using NG foam
- Estimate cost for a full-scale system

Focus of Year 2 Efforts

- Rheology data for NG foams is not published in literature
- The lab-scale test stand will provide key data at/near actual field conditions:
 - NG foam rheology data
 - Evaluation of foam stability/mixing
 - Simulate fracture initiation to observe pressure transients in foam

Questions?

Griffin Beck SwRI griffin.beck@swri.org (210) 522-2509 Sandeep Verma Schlumberger <u>sverma3@slb.com</u> (617) 768-2031

Project Organization

PI

Melissa Poerner, P.E. & Griffin Beck (interim PI)

Co-PI Dr. Klaus Brun & Kevin Hoopes Engineering Support Craig Nolen & Charles Krouse

Contracts Mary Lepel

Schlumberger

PI Dr. Sandeep Verma (SDR) PM Garud Sridhar Engineering Support Alhad Phatak, Terrence Goettsch, & Carina Pechiney Engineering Consultation

Dr. John Brisson (MIT)

Project Schedule

Bibliography

 At the time of presentation, no publications have resulted from this project work

References

- 1. Ariel Corporation, 2016, retrieved from <u>https://www.arielcorp.com/JGC-JGD-JGF/</u>
- 2. Cyrostar, 2016, retrieved from <u>www.cryostar.com/pdf/data-sheet/en/hpp.pdf</u>
- 3. Hutchins, R. D., and Miller, M. J., 2003, "A Circulating Foam Loop for Evaluating Foam at Conditions of Use," Society of Petroleum Engineers, Houston, TX, p. 10. SPE-80242.
- 4. Nolen-Hoeksema, R., 2013, "Elements of Hydraulic Fracturing," Oilfield Rev., 25(2), pp. 51–52.
- 5. CS&P, 2016, retrieved from <u>www.csphouston.com/industrial_cryogenic/ICP45-01202010.pdf</u>
- 6. J.M. Canty, 2016, "TA7461-1 F700 Series Flanged Sight Flows", retrieved from <u>http://www.jmcanty.com/product/f700-series-flanged-sight-flows/</u>